Public sector decentralization and school performance: International evidence

Torberg Falch a,b, Justina A.V. Fischer c,d,*

a Department of Economics, Norwegian University of Science and Technology, Dragvoll, N-7491 Trondheim, Norway
b CESifo, Munich, Germany
c OECD, Social Policy Division, F-75775 Paris, France
d Thurgau Institute for Economics at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland

ARTICLE INFO

Article history:
Received 13 October 2008
Received in revised form
4 October 2011
Accepted 20 October 2011
Available online 7 November 2011

JEL classification:
C33
H2
I2
H40

Keywords:
Fiscal decentralization
Student achievement
Federalism
PISA & TIMSS
Education
School quality

ABSTRACT

Using a panel of international student test scores 1980–2000 (PISA and TIMSS), panel fixed effects estimates suggest that government spending decentralization is conducive to student performance. The effect does not appear to be mediated through levels of educational spending.

© 2011 Published by Elsevier B.V.

1. Introduction

In political economy and public finance, the linkage between government decentralization and the quality of public sector services has been much debated. However, empirical evidence is limited since, in general, the quality of public sector activities is hard to measure, and decentralization varies mostly across countries. In this paper, we utilize a country panel based on several comparative international achievement tests of students to quantify the quality of compulsory education, and estimate the effect of public sector spending decentralization within a panel data framework.

2. Related literature

Oates (1972) argues that, in general, more decentralized political decision-making allows better adjustment of (local) supplies to locally heterogeneous demands. In the model of Hoxby (1999), public school productivity is higher with decentralized financing through local property taxes since Tiebout mechanisms reveal important information on local preferences. In Seabright's (1996) framework with incomplete contracts, the main advantage of decentralization is that it is easier to hold decision-makers accountable. For other effects of decentralization, see, for example, Bjørnskov et al. (2008) and Dreher and Fischer (2011).

In the economics of education literature, the empirical evidence mainly supports the view that decentralized education systems improve student achievement. In a cross-country analysis, Wößmann (2003) finds that school autonomy exerts a beneficial impact. Hoxby and Murarka (2009) report that autonomous charter schools perform better than public sector schools in the US, and Clark (2009) identifies a positive effect of a major reform granting larger school autonomy in the UK. Galiani and Schargrodsky (2002) show that the decision to decentralize public education in the early 1990s raised student achievement in Argentina, while Naper (2010) reports that decentralized hiring of teachers increases school effectiveness in Norway. On the other hand, Merrouche (2007) finds that decentralization of education spending responsibility in Spain did not affect the illiteracy rate. Regarding general government decentralization, Barankay and Lockwood...
(2007) identify for 26 Swiss states a positive effect on the share of high school graduates in the 19-year-old population. The literature is inconclusive on whether measures of school spending decentralization just approximate general government decentralization, or whether educational decentralization is important per se.

3. The model and data

Our empirical model focuses on the relationship between school quality and public sector decentralization. We define school quality in terms of achievement in test scores obtained from all six available comparative international achievement tests from 1980 to 2000 assessing students aged 13–15 years.¹ We use the national average of the scores in mathematics and natural science tests, and standardize them in order to ensure comparability across tests. Our procedure standardizes the test scores for the most frequently participating ("core") countries. For each test, the mean of our adjusted score is set equal to zero with standard deviation of unity within the group of "core" countries. For a given test, the overall average value then depends on the test performance in "non-core" countries, and consequently on which "non-core" countries participated or not.²

Decentralization is commonly defined as the percentage of sub-national government spending in general government spending, calculated by the World Bank up to 1999.³ Keman (2000) and Treisman (2000) argue that it is important to distinguish discretion in terms of financial policy implementations by local administrations ("the right to act"), which we measure directly, from local government political autonomy ("the right to decide"), which we capture only indirectly. Any reform in government decentralization may need some time to influence behavior. The size of the lag will depend on to what extent the change in decentralization was expected and student learning is cumulative. We will use a lag of one year in the decentralization variable to account for sluggish responses, but will also present results from models allowing for more lags in the variable of interest.

In addition, the empirical model includes as covariates GDP per capita, population size, and the size of the public sector that insures against income shocks, particularly government social expenditures and government consumption spending (for sources see Falch and Fischer, 2008a).⁴ Country fixed effects account for time-invariant features such as institutions and culture (e.g., the national school system, school autonomy, population preferences, etc.). They are expected to mitigate potential endogeneity biases. We also include a dummy variable for the only OECD PISA test in the regression sample.

The way the dependent variable is constructed is an argument for not including time fixed effects in the baseline model. With time fixed effects, the within-country variation in student performance would depend on the composition of participating countries in the specific tests. The motivation for the standardizing procedure we apply is exactly to avoid this flaw. However, to assess the robustness of the specification, we test for the presence of time effects.

For reasons of comparability, we restrict the sample to well-established OECD countries (as of 1990) with relatively stable political and administrative systems, excluding the post-communist countries. Table 1 provides descriptive statistics. The standard deviation of the dependent variable is close to unity. On average, local government spending constitutes 31% of total government spending, varying from 4% (Greece) to almost 60% (Canada). For all variables, the within-country variation seems to be sufficiently large to justify a country fixed effects specification.

4. Empirical results

4.1. Main results

Table 2 provides the regression outcomes. Column (1) presents the simple correlation between spending decentralization and test score. The relationship is positive but small. The remaining models (columns (2)–(10)) include country fixed effects.

Comparing the results in columns (1) and (2), we observe that including country fixed effects and covariates increases the size of the effect of decentralization (0.021 versus 0.072) and its significance level (10% versus 5%). In the full model (2), the result implies that increasing spending decentralization by 10 percentage points increases student test scores by 0.7 standard deviations. This is a non-trivial effect given that three countries in the sample have within-country-variations in decentralization larger than 5 percentage points.

Model 2 does not include time-specific effects as explained above, but a dummy variable for the PISA test of the year 2000, which is highly significant. Notice, however, that if time-specific effects are included, they are jointly insignificant.⁵ Column (3) in Table 2 replaces the PISA dummy variable with a time trend, without affecting the coefficient size of decentralization (0.074 versus 0.073). Since the trend is not significant at conventional levels, the remaining models presented include only the PISA dummy variable but exclude the time trend. Excluding any time variable increases the effect of decentralization to 0.088 (column (4)).

The results in Table 2 also imply that student performance is not affected by GDP or population size. Regarding GDP, there may be an endogeneity problem in the long run because of a growth-enhancing effect of student achievement (Hanushek and Kimko, 2000). However, excluding the GDP does not alter the coefficient size of decentralization.

4.2. Public sector size

Columns (5) and (6) in Table 2 show that the positive effect of decentralization is robust to the inclusion of public sector size, measured by either total government consumption spending or government social expenditures (0.074 and 0.073, respectively). The effect of decentralization does not appear to be mediated through government spending activities. Both public sector size coefficients are negative and of similar magnitude as reported in Falch and Fischer (2008a), but insignificant, probably due to fewer observations in the present analysis.

Given that decentralization increases student achievement while government size tends to reduce it, one would expect, in line with the finding for life satisfaction in Bjørnskov et al. (2008), that decentralization is more advantageous in the case of large governments than with small governments. Columns

¹ We use the results of the SIMS and SISS tests conducted by the International Association for the Evaluation of Educational Achievement (IEA) in 1980–81 and 1983–85, respectively, the IAEP test in 1990–91, IEA’s TIMSS tests in 1994–95 and 1998–99, and the OECD PISA test in 2000.
² For a detailed description of the standardization procedure, see Falch and Fischer (2008a).
³ The index is more closely described in Dreher and Fischer (2010, 2011).
⁴ We have also estimated models including the population share with at least a secondary education. The t-value of this variable was always below unity, and values are missing for some observations.
⁵ The p-value on a test for joint significance using the model specification in column (2) in Table 2 is 0.47.
(7) and (8) add interaction terms between government size and decentralization. Contradicting our hypothesis, both interaction terms are negative. The performance-enhancing effect appears to decline in public sector size. One might speculate whether market distortions through non-internalization of inter-jurisdictional spillovers increase more in decentralized countries than in centralized countries as the government’s involvement in the economy increases. The interaction terms are small, however, and only significant at the 10% level for social spending. Despite the negative interaction, the total marginal effect of decentralization remains positive for the within-country variation in social expenditures, for which it varies from 0.05 to 0.08.\(^6\)

4.3. Robustness tests on decentralization

One may suspect that the small within-country variation in the decentralization measure is due to minor changes in, for example, accounting rules rather than changes in the real economy.\(^6\)

However, some of the variation is clearly real. For example, the dip in decentralization by 3.5 percentage points in Germany in 1991 is a unification effect: the East German Laender were fiscally far less autonomous than the West German Laender. The continuous decline from 1991 on reflects the growing dependence of the East German Laender on federal transfers. The ongoing decrease in decentralization in Switzerland from 1990 on by roughly 0.5 percentage points per year seems to be related to continuously rising unemployment and old-age pension expenditures at the federal level. Sweden experienced relatively large fluctuations in decentralization in the 1990s related to the major recession at the start of the decade and the governmental reforms that followed it. We have estimated the model on subsamples of countries with relatively small and large changes in decentralization, and found that the effect of decentralization is stable.\(^7\)

\(^6\) The estimated coefficients can readily be interpreted because all interacted variables are centered. For centered log of social spending, the within-country variation ranges from −0.248 to 0.198.

\(^7\) Five countries have within-country standard deviation in decentralization above 2.5 in the regression sample (Sweden, USA, Iceland, Switzerland, and Germany). For this subsample of 17 observations, the coefficient (standard error) of decentralization is 0.088 (0.048). For the other countries (68 observations), the coefficient is 0.066 (0.046), and a statistical test cannot reject that the coefficients are equal (\(p\)-value of 0.74). When the sample is split into two equal-sized subsamples of countries with small and large within-country variation in decentralization, the coefficients are 0.071 (0.074) and 0.083 (0.039), respectively.
The response time of student performance to changes in decentralization is not clear from economic theory, but one might expect that some time passes by before structural changes start having an effect. The model in column (9) of Table 2 uses five-year moving averages of all explanatory variables. This specification also smooths out minor fluctuations in the decentralization measure due to, for example, changes in accounting rules. The effect of decentralization is now slightly smaller (0.062), but still significant at the 10% level. When testing for a more sluggish response to changes in fiscal decentralization, employing a three-year (two-year) lag of the variable of interest, we obtain a coefficient of 0.052 (0.062) (both significant at the 5% level, not reported).

Column (10) in Table 2 investigates one potential transmission channel for the effect of spending decentralization. We test the hypothesis that decentralization influences student performance through public expenditures levels in compulsory education (e.g. Fischer, 2005). Column (10) adds to model (2) primary school expenditures per pupil as a percentage of GDP, but the effect is clearly insignificant. In contrast, the coefficient of decentralization stays significant (0.100), indicating that its effect is not transmitted through educational spending.9

5. Conclusion

A panel data analysis of international student test scores suggests that government spending decentralization is beneficial to student performance. This general decentralization effect appears not to be mediated by levels of educational spending. Our analysis also suggests that this advantageous effect decreases in public sector size. However, further research appears necessary on the transmission mechanisms through which the positive effect of local policy implementation works.

Acknowledgments

We thank Axel Dreher, Lars Feld, Urs Fischbacher, Gebhard Kirchgässner, Christoph Schaltegger, Jan Schnellenbach, Bjarne Stram, and Roland Vaubel for helpful comments and discussions, and Dan Stegarescu and Daniel Treisman for sharing their data. Torberg Falch thanks the Thurgau Institute for Economics (TWI) at the University of Konstanz for generous hospitality.

References

8 These data are obtained from the World Bank education database. In this database, there are fewer observations by far for secondary education than for primary education.

9 In principle, general spending decentralization, which sums up all budgetary spending categories, may only approximate government decentralization in spending on education, a finding that would be in congruence with the school autonomy effects referred to above (Section 2). Unfortunately, a measure for education spending decentralization is only available from 1997 on, which makes a thorough test of the hypothesis impossible. However, the preliminary findings in Falch and Fischer (2008b) suggest that it is general decentralization and not school decentralization which matters.